Biholomorphic Maps between Teichmüller Spaces

نویسنده

  • VLADIMIR MARKOVIC
چکیده

In this paper we study biholomorphic maps between Teichmüller spaces and the induced linear isometries between the corresponding tangent spaces. The first main result in this paper is the following classification theorem. If M and N are two Riemann surfaces that are not of exceptional type, and if there exists a biholomorphic map between the corresponding Teichmüller spaces Teich(M) and Teich(N ), then M and N are quasiconformally related. Also, every such biholomorphic map is geometric. In particular, we have that every automorphism of the Teichmüller space Teich(M) must be geometric. This result generalizes the previously known results (see [2], [5], [7]) and enables us to prove the well-known conjecture that states that the group of automorphisms of Teich(M) is isomorphic to the mapping class group of M whenever the surface M is not of exceptional type. In order to prove the above results, we develop a method for studying linear isometries between L1-type spaces. Our focus is on studying linear isometries between Banach spaces of integrable holomorphic quadratic differentials, which are supported on Riemann surfaces. Our main result in this direction (Theorem 1.1) states that if M and N are Riemann surfaces of nonexceptional type, then every linear isometry between A1(M) and A1(N ) is geometric. That is, every such isometry is induced by a conformal map between M and N.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Universal Properties of Teichmüller Spaces

We discuss universal properties of general Teichmüller spaces. Our topics include the Teichmüller metric and the Kobayashi metric, extremality and unique extremality of quasiconformal mappings, biholomorphic maps between Teichmüller space, earthquakes and Thurston boundary.

متن کامل

Liftings of Holomorphic Maps into Teichmüller Spaces

We study liftings of holomorphic maps into some Teichmüller spaces. We also study the relationship between universal holomorphic motions and holomorphic lifts into Teichmüller spaces of closed sets in the Riemann sphere.

متن کامل

The Canonical Metric on a Riemann Surface and Its Induced Metric on Teichmüller Space

Throughout this paper Σ is a smooth, oriented, closed Riemann surface of genus g, with n punctures and 3g−3+n > 1. Teichmüller space Tg,n is the space of conformal structures on Σ, where two conformal structures σ and ρ are equivalent if there is a biholomorphic map between (Σ, σ) and (Σ, ρ) in the homotopy class of the identity map. The moduli space Mg of Riemann surfaces can be obtained as th...

متن کامل

Teichmüller spaces and holomorphic dynamics

One fundamental theorem in the theory of holomorphic dynamics is Thurston’s topological characterization of postcritically finite rational maps. Its proof is a beautiful application of Teichmüller theory. In this chapter we provide a self-contained proof of a slightly generalized version of Thurston’s theorem (the marked Thurston’s theorem). We also mention some applications and related results...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003